The Definition of the Cartesian Product Is
Weird

Let A and B be sets. Then the Cartesian product A x B is the set of all
ordered pairs (a,b) where a € A and b € B.

This definition is very basic and easy to understand. It is also familiar even
to people who haven’t studied mathematics to the level where things start
having definitions instead of descriptions: the Cartesian product describes
what is going on when you graph things on the Cartesian plane.

But I find the definition of the Cartesian product weird because it doesn’t
actually tell you what the Cartesian product is. It doesn’t, as far as I can tell,
actually define the Cartesian product. Instead, it uses suggestive notation
to influence the reader in such a way that they are unlikely to mess up what
the Cartesian product is.

Here is the basic issue with the definition: the above definition of the Carte-
sian product tells you what elements are in the set A x B, and nothing else.
Because of the suggestive notation (a, b) given to each element, knowing what
elements are in the set feels meaningful, as each element clearly appears to
pertain to the sets A and B. So if A = {a1,as} and B = {by, by}, then an
element such as (a1, bs) € A x B feels meaningful because we can see how its
components a; and by relate back to A and B respectively.

But logically, there’s no “meaning” to elements. They’re just squiggles that
are put inside braces and separated by commas from other squiggles in the
same pair of braces. It feels more sensible to say “For all x in X” than “For
all y in X7, but mathematically it’s the same.

There’s nothing wrong with suggestive notation, of course, but it means
that a definition that relies on how elements are written to define the set
is a definition that is being sneaky. If the Cartesian product A x B =
{(a1,b1), (a1,b2), (az, b1), (az,bs)}, then we could have just as easily written



A x B ={w,x,y, z} because in each case, we've filled a pair of braces with
four squiggles separated by commas.

Of course, the elements w, x,y, z don’t have anything to do with the sets A
and B, but that’s also true of the elements (aq,b1), (a1, b2), (ag,b1), (az, bs).
The latter elements appear to be related to A and B, but the element (ay, by)
isn’t actually a complex object made of two parts, one part coming from
A and the other part coming from B. It’s just an arbitrary squiggle that
happens to visually resemble the kind of thing we want to be talking about
when we talk about the Cartesian product of A and B. But if we accept the
obvious-sounding principle that no theorem depends on a choice of squiggle—
the principle that {one, two, three} could just as easily be {shmlep, bloop,
blep }—then we should be able to talk about the Cartesian product without
relying on suggestive notation to fill in the gap left by this so-called definition.

The definition of the Cartesian product does do one important thing: it tells
you how many elements are in the Cartesian product. It obscures why this
matters and how you can mess around with it, but it is important to have
a way of pinning down how many elements the Cartesian product should
have, even if you aren’t told why it should have that many, or what “should”
means in this context.

As best I can tell, the real definition of the Cartesian product is “any set
that labels the points on the Cartesian plane”:

B
b]. [ ] [ ]
b2 [ ] [ ]
451 a2 A
Figure 1

You could think of the points on this graph as constituting a “generic” def-

inition of the Cartesian product of A and B, where anything that labels these

four points is a specific Cartesian product. So the set {(ay,by), (a1, b2), (az, b1), (az,b2)}
works as a Cartesian product because we can label the elements like so:
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But we can clearly also use the set {w,x,y, 2} to label the points on the
graph:
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Clearly, any four-element set is going to work as the Cartesian product of A
and B. Note also that there are many ways to use a four-element set to label
the points on the graph. (Specifically, there are 4! = 24 ways to do so for a
given four-element set.) For example, both of the following graphs are also
the Cartesian product of A and B:
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The second graph might be confusing because we label the points “wrong” —
for example, the point where a straight line from a; intersects with a straight
line from by is labeled (aq,b;). But remember, the label is an element of a
set, and an element of a set is just a squiggle. So we can label it however we
like. It’s preferable for humans to use notation that “makes sense”, but in
purely mathematical terms, it makes no difference.

This gets even weirder, however, when we see that any set can serve as the
Cartesian product. Let C' = {a,b,c,d,e, f,g,h}. Then we can use C' to fill
in the graph like so:
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Here, we have labeled every point twice rather than once like we did previ-
ously. Is this...a problem? Are we not allowed to do this? The definition of
the Cartesian product doesn’t say.

There’s nothing illogical about this double-labeling—it doesn’t break any
mathematical rules—but it isn’t efficient. It’s clearly much more sensible to
label each point exactly once. So this eight-element set can “do the job” of
the Cartesian product in terms of labeling every point on the graph, but it
isn’t “the” Cartesian product because it can’t label every point on the graph
efficiently. Only a four-element set can be an efficient Cartesian product (of
two sets with two elements each).

We can see that the definition of the Cartesian product gives us a way of
constructing a set with exactly the right amount of elements. In fact, this
is the only thing that the definition of the Cartesian product does that’s
meaningful on a purely mathematical level. This makes sense because any
set in isolation can only be described in terms of its cardinality, so if you're
defining a set, all you can really do is define its cardinality. But giving you
a way to construct a set with the right amount of elements isn’t enough
to define the Cartesian product because “any four-element set” isn’t quite
sufficient to label all four points on the graph. We have to actually use the
set to label all four points on the graph. Otherwise we might end up with
the following situation:
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We can clarify what we mean by “using” the set in this way by talking
about projection functions. Each label’s position on the graph indicates two
mapping from the four-element set: one mapping projecting the set onto A
by drawing a vertical line straight down, and one mapping projecting the set
onto B by drawing a horizontal line to the left. Wherever you land on the
A-axis is where the element is mapped to A, and wherever you land on the
B-axis is where the element is mapped to A. For example, Figure 7 depicts
a pair of functions f : {w,z,y,z} - A and g : {w,z,y, 2} — B where

Whereas Figure 2 depicts a pair of functions p; : AxB — Aand ps : AXB —
B where



Clearly, projection functions like p; and p, are crucial for having a four-
element set like A x B actually serve as the Cartesian product of A and B.
But the definition of the cartesian product where A x B is the set of all
ordered pairs (a,b) such that a € A and b € B does not mention projection
functions at all! Instead, it hints at projection functions by using suggestive
notation such that the reader can be expected to infer, probably unwittingly,
what the projection functions are supposed to be.

In economics, by the way, you will hear people say that math is useful because
it makes you clearly state your assumptions.

The suggestiveness of the notation in the set A x B lies in the fact that
the elements of A x B have components that are written the same way as
the elements of A and B are, in a way that suggests obvious projection
functions. For example, the ordered pair (aj,b;) € A x B obviously feels
like it should be mapped to a; with one projection function and be mapped
to b; with another projection function. Projection functions that perform
the “obvious” mapping—so obvious it doesn’t even need to be described—
from the Cartesian product to the sets it is a product of are called canonical
projection functions. Because these canonical projection functions are so
intuitively obvious, the standard definition of the Cartesian product is able
to get away with not mentioning them even though without them, you don’t
have a Cartesian product, you just have a four-element set.

So the definition of the Cartesian product does exactly two things: It provides
you with a way of constructing the relevant set such that it has exactly the
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right amount of elements, and it gives you a method for writing the elements
of the set such that the canonical projection functions that you need to turn
the set from just a set into the actual Cartesian product are obvious enough
that you will implicitly define them without realizing you’ve done so.

This works as a definition in the sense that it probably will cause you to do
everything right in practice. But it isn’t a definition in the sense of actually
defining the Cartesian product! The Cartesian product of A and B isn’t a
four-element set, it’s a four-element set that labels each point on the Cartesian
plane where A is the x-axis and B is the y-axis exactly once.

But this definition relies on being able to visualize the Cartesian product,
which is of limited utility and won’t generalize to higher dimensions. So a
way of defining the Cartesian product that actually defines it is this: For
any two sets A and B, the Cartesian product is the set A x B along with
projection functions m; : A x B — A and my : A X B — B such that for any
other set X with functions f : X — A and ¢ : X — B, there is a unique
function k£ : X — A x B such that the following diagram commutes:
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Figure 8

The diagram commutes when m 0k = f and mp ok = g.

This definition is much more abstract and hard to understand than the fa-
miliar definition of the Cartesian product based on ordered pairs. But the
advantage is that it actually defines the Cartesian product: you can check
your candidate product against this definition to see if it is or is not the
Cartesian product.

It’s noteworthy that this definition makes explicit mention of projection func-
tions. The ordered pairs definition leaves the projection functions implied.
But as you can see from comparing Figure 3 with Figure 7, a set is only
a Cartesian product if it is equipped with appropriate projection functions.
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You know whether the projection functions are appropriate depending on
whether they fit the definition.

For example, let X = {x,y, z} with projection functions to A and to B as
indicated by this graph:
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And equip the set A x B with projection functions like so:
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Visually, we can see that we've equipped the set A x B with the wrong
projection functions for A x B to be the product of A and B. But we can show
this formally by recalling that we require a unique function k : X — A x B
such that the way X projects is preserved. This means that each element of
X should be mapped onto an element of A x B that is on the same point
in the Cartesian plane. Thus, we require k(z) = (az2,b and k(y) = (a1, b2).
These choices are forced. But what about k(x)? We could map x to (a,by)
or to (ag,by). Because we have two choices for k(z), this means there are
two functions from X to A x B such that the way X projects to A and to B



is preserved. Since there is no unique function that does this preservation,
this means that A x B along with the above projection functions is not the
Cartesian product. However, if our candidate product is A x B along with
these projection functions, it will work:
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You can see that we must have k(x) = (ag, b1), k(y) = (ag,bs), and k(z) =
(a1,b1). Thus, there is a unique function from X to A x B such that the way
X projects to A and to B is preserved. You can verify that any set with a
pair of functions to A and to B has only one possible function to A x B along
with the projection functions indicated in Figure 11 such that the diagram in
Figure 8 commutes. For example, the set and projection functions indicated
in Figure 7 has only one way of mapping to the situation depicted in Figure
11 such that everything commutes.

We can see why the Cartesian product needs to have enough elements—four,
when it’s the product of two two-element sets. For example, the candidate
product depicted in Figure 9 won’t be able to make diagrams commute when
it needs to receive an element from another set that projects to as € A and
to by € B. What if it has more than four, like the set W = {v,w,z,y, 2}
along with projection functions depicted here:
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Then you can see that any set with an element that projects to a; € A and
to by € B will have two choices of how to map to W to make everything
commute, so we won’t have a unique function, so W cannot be a Cartesian
product of A and B. Therefore, a Cartesian product of A and B must
have exactly four elements. And indeed, the original definition we saw of the
Cartesian product did tell us to construct a four-element set to be the product
of A and B. But as we’ve seen, having four elements is merely necessary, not
sufficient. You also need the projection functions, which the definition of the
Cartesian product only hinted at, but never described explicitly.

And T just think it’s interesting that mathematical definitions sometimes
aren’t really definitions, but in fact leave a crucial half of the definition
unstated.
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